3D trajectory planning method for UAVs swarm in building emergencies Articles uri icon

publication date

  • February 2020

start page

  • 1

end page

  • 20

issue

  • 3

volume

  • 20

International Standard Serial Number (ISSN)

  • 1424-8220

abstract

  • The development in Multi-Robot Systems (MRS) has become one of the most exploited fields of research in robotics in recent years. This is due to the robustness and versatility they present to effectively undertake a set of tasks autonomously. One of the essential elements for several vehicles, in this case, Unmanned Aerial Vehicles (UAVs), to perform tasks autonomously and cooperatively is trajectory planning, which is necessary to guarantee the safe and collision-free movement of the different vehicles. This document includes the planning of multiple trajectories for a swarm of UAVs based on 3D Probabilistic Roadmaps (PRM). This swarm is capable of reaching different locations of interest in different cases (labeled and unlabeled), supporting of an Emergency Response Team (ERT) in emergencies in urban environments. In addition, an architecture based on Robot Operating System (ROS) is presented to allow the simulation and integration of the methods developed in a UAV swarm. This architecture allows the communications with the MavLink protocol and control via the Pixhawk autopilot, for a quick and easy implementation in real UAVs. The proposed method was validated by experiments simulating building emergences. Finally, the obtained results show that methods based on probability roadmaps create effective solutions in terms of calculation time in the case of scalable systems in different situations along with their integration into a versatile framework such as ROS.

keywords

  • uav; 3d probabilistic roadmaps; trajectory planning; multi-robot systems