Electronic International Standard Serial Number (EISSN)
1872-793X
abstract
In this paper, we propose an efficient approach to perform recognition and 3D localization of dynamic objects on images from a stereo camera, with the goal of gaining insight into traffic scenes in urban and road environments. We rely on a deep learning framework able to simultaneously identify a broad range of entities, such as vehicles, pedestrians or cyclists, with a frame rate compatible with the strict requirements of onboard automotive applications. Stereo information is later introduced to enrich the knowledge about the objects with geometrical information. The results demonstrate the capabilities of the perception system for a wide variety of situations, thus providing valuable information for a higher-level understanding of the traffic situation.
Classification
subjects
Mechanical Engineering
keywords
object detection; pose estimation; deep learning; intelligent vehicles