Performance-driven scheduling for malleable workloads Articles uri icon

publication date

  • January 2024

start page

  • 11556

end page

  • 11584

volume

  • 80

International Standard Serial Number (ISSN)

  • 0920-8542

Electronic International Standard Serial Number (EISSN)

  • 1573-0484

abstract

  • The development of adaptive scheduling algorithms that take advantage of malleability has become a crucial area of research in many large-scale projects. Malleable workloads can improve the system's performance but, at the same time, provide an extra dimension to the scheduling problem. This paper proposes an adaptive, performance-based job scheduling method that emphasizes the backfilling concept with malleability. The proposed method performs the malleability operations only when the estimated execution time of the involved applications is better than or equal to the execution time on the allocated resources without reconfiguration. The reconfiguration feasibility is determined by performance models considering the application scalability and reconfiguration overheads. Different policies for implementing malleability are presented, each targeting a specific workload in terms of job size and scalability. The comprehensive evaluation shows an improvement in the slowdown up to 49% compared to the non-adaptive baseline scheduling algorithm.

subjects

  • Computer Science

keywords

  • job scheduling; malleability; backflling; expand policies; performance models