Optimization design of a calibration for quantitative radiography Articles uri icon

publication date

  • March 2021

start page

  • 1039

end page

  • 1053

issue

  • 3

volume

  • 48

International Standard Serial Number (ISSN)

  • 0094-2405

abstract

  • ObjectiveDual energy radiography (DER) makes it possible to obtain separate images for soft‐tissue and bony structures (tissue maps) based on the acquisition of two radiographs at different source peak‐kilovoltage values. Current DER studies are based on the weighted subtraction method, which requires either manual tuning or the use of precomputed tables, or on decomposition methods, which make use of a calibration to model soft‐tissue and bone components. In this study, we examined in depth the optimum method to perform this calibration. MethodsWe used simulations to optimize the calibration protocol and evaluated the effect of the material and size of a calibration phantom composed of two wedges and its positioning in the system. Evaluated materials were water, PMMA and A‐150 as soft‐tissue equivalent, and Teflon, B‐100 and aluminum as bone equivalent, with sizes from 5 to 30 cm. Each material combination was compared with an ideal phantom composed of soft tissue and bone. Our simulation results enabled us to propose four designs that were tested with the NOVA FA X‐ray system with a realistic thorax phantom. ResultsCalibration based on a very simple and inexpensive phantom with no strict requirements in its placement results in appropriate separation of the spine (a common focus in densitometry studies) and the identification of nodules as small as 6 mm, which have been reported to have a low rate of detection in radiography. ConclusionThe proposed method is completely automatic, avoiding the need for a radiology technician with expert knowledge of the protocol, as is the case in densitometry exams. The method provides real mass thickness values, enabling quantitative planar studies instead of relative comparisons.

keywords

  • calibration; dual energy; quantitative radiography; x-ray