Postmortem analysis using different sensors and technologies on aramid composites samples after ballistic impact Articles uri icon

publication date

  • May 2020

start page

  • 1

end page

  • 16

issue

  • 10

volume

  • 20

International Standard Serial Number (ISSN)

  • 1424-8220

abstract

  • This work focuses on the combination of two complementary non-destructive techniques to analyse the final deformation and internal damage induced in aramid composite plates subjected to ballistic impact. The first analysis device, a 3D scanner, allows digitalising the surface of the tested specimen. Comparing with the initial geometry, the permanent residual deformation (PBFD) can be obtained according to the impact characteristics. This is a significant parameter in armours and shielding design. The second inspection technique is based on computed tomography (CT). It allows analysing the internal state of the impacted sample, being able to detect possible delamination and fibre failure through the specimen thickness. The proposed methodology has been validated with two projectile geometries at different impact velocities, being the reaction force history on the specimen determined with piezoelectric sensors. Different loading states and induced damages were observed according to the projectile type and impact velocity. In order to validate the use of the 3D scanner, a correlation between impact velocity and damage induced in terms of permanent back face deformation has been realised for both projectiles studied. In addition, a comparison of the results obtained through this measurement method and those obtained in similar works, has been performed in the same range of impact energy. The results showed that CT is needed to analyse the internal damage of the aramid sample; however, this is a highly expensive and time-consuming method. The use of 3D scanner and piezoelectric sensors is perfectly complementary with CT and could be relevant to develop numerical models or design armours.

keywords

  • 3d scanner; composite; ct tomography; damage; piezoelectric sensor