Regimes of boundary-layer ignition by heat release from a localized energy source Articles uri icon

publication date

  • January 2017

start page

  • 1467

end page

  • 1473

issue

  • 1

volume

  • 36

international standard serial number (ISSN)

  • 1540-7489

electronic international standard serial number (EISSN)

  • 1873-2704

abstract

  • This paper investigates the initiation of a deflagration in a premixed boundary-layer stream by continuous heat deposition from a line energy source placed perpendicular to the flow on the wall surface, a planar flow configuration relevant for small-scale combustion applications, including portable rotary engines. Ignition is investigated in the constant density approximation with a one-step irreversible reaction with large activation energy adopted for the chemistry description. The ratio of the characteristic strain time, given by the inverse of the wall velocity gradient, to the characteristic deflagration residence time defines the relevant controlling Damkhler number D. The time-dependent evolution following the activation of the heat source is obtained by numerical integration of the energy and fuel conservation equations. For sufficiently small values of D, the solution evolves towards a steady flow in which the chemical reaction remains confined to a finite nearsource reactive kernel. This becomes increasingly slender for increasing values of D, corresponding to smaller near-wall velocities, until a critical value D(c)1 is reached at which the confined kernel is replaced by a steady anchored deflagration, assisted by the source heating rate, which develops indefinitely downstream. As the boundary-layer velocity gradient is further decreased, a second critical Damkhler number D-c2 > D-c1 is reached at which the energy deposition results in a flashback deflagration propagating upstream against the incoming flow along the base of the boundary layer. The computations investigate the dependence of D-c1 and D-c2 on the fuel diffusivity and the dependence of D(c 1)on the source heating rate, delineating the boundaries that define the relevant regime diagram for these combustion systems. (C) 2016 by The Combustion Institute. Published by Elsevier Inc.

keywords

  • ignition; deflagration; portable power; flame flashback; premixed flames; flow; stability; wall