Electronic International Standard Serial Number (EISSN)
1361-6560
abstract
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s−1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Classification
subjects
Biology and Biomedicine
keywords
positron emission tomography (pet); ancillary equipment; image quality; medical physics