Optimal design and current control strategies of an electrodynamic tape for ISS station-keeping Articles uri icon

publication date

  • October 2024

start page

  • 621

end page

  • 629

volume

  • 223

International Standard Serial Number (ISSN)

  • 0094-5765

Electronic International Standard Serial Number (EISSN)

  • 1879-2030

abstract

  • This study analyzes the performance of a tape-like bare electrodynamic tether as a promising propellant- free technology for the International Space Station (ISS) station-keeping, supporting the concept that the technology can provide significant mission benefits by reducing the ISS reliance on costly refueling operations for orbit maintenance. Convenient control laws for managing the electrical power supplied to the tether are proposed, exploring two distinct scenarios. The first involves using the electrodynamic tether continuously to counteract aerodynamic drag. The second adopts a cyclic approach, alternating between boosting the station with the tether and allowing for periods of natural decay. Optimal tether geometry, aimed at maximizing system efficiency, is also detailed. The study specifies an electrodynamic tether configuration featuring a 6-kilometer-long aluminum ribbon, 5 cm wide and 50 mu m thick, capable of overcoming aerodynamic drag ranging from 0.40 N to 0.80 N. Additionally, numerical simulations assess the tether performance under real environmental conditions. Furthermore, the study briefly introduces the potential of a photovoltaic tether as a fully autonomous system capable of supplying the necessary input power.

subjects

  • Aeronautics
  • Physics

keywords

  • green propulsion; space tethers; international space station; station-keeping