Electronic International Standard Serial Number (EISSN)
1879-2545
abstract
We theoretically and experimentally investigate a metasurface supporting a silicon-slot quasi-bound state in the continuum (qBIC) mode resonating in the near-infrared spectrum. The metasurface is composed of circular slots etched in a silicon layer on a sapphire substrate. The symmetry of the metasurface unit cell is reduced in order to provide access to the symmetry-protected mode, whose properties are investigated by finite-element full-wave and eigenfrequency analysis. The measured transmittance spectra verify the excitation of the investigated qBIC mode with experimental quality factors exceeding 700. The near-field distribution of the resonant qBIC mode shows strong field confinement in the slots, leading to high sensitivity values for refractometry.
Classification
subjects
Electronics
keywords
biosensing; bound states in the continuum; metamaterials; nanofabrication; silicon metasurfaces; symmetry-protected modes