Inverse load identification in vibrating nanoplates Articles uri icon

publication date

  • January 2023

start page

  • 1045

end page

  • 1075


  • 1


  • 46

International Standard Serial Number (ISSN)

  • 0170-4214

Electronic International Standard Serial Number (EISSN)

  • 1099-1476


  • In this paper, we consider the uniqueness issue for the inverse problem of load identification in a nanoplate by dynamic measurements. Working in the framework of the strain gradient linear elasticity theory, we first deduce a Kirchhoff-Love nanoplate model, and we analyze the well-posedness of the equilibrium problem, clarifying the correct Neumann conditions on curved portions of the boundary. Our uniqueness result states that, given a transverse dynamic load (Formula presented.), where (Formula presented.) and (Formula presented.) are known time-dependent functions, if the transverse displacement of the nanoplate is known in an open subset of its domain for any interval of time, then the spatial components (Formula presented.) can be determined uniquely from the data. The proof is based on the spherical means method. The uniqueness result suggests a reconstruction technique to approximate the loads, as confirmed by a series of numerical simulations performed on a rectangular clamped nanoplate.


  • Biology and Biomedicine
  • Electronics
  • Industrial Engineering
  • Materials science and engineering
  • Mechanical Engineering
  • Physics
  • Telecommunications


  • eigenvalues; identification of mass density; inverse problems; microplate; strain-gradient elasticity