PREDICT 6G: PRogrammable AI-Enabled DeterminIstiC neTworking for 6G Projects uri icon

type

  • European Research Project

reference

  • 101095890

date/time interval

  • January 1, 2023 - June 30, 2025

abstract

  • 6G is envisioned to accelerate the path started in 5G for catering to the needs of a wide variety of vertical use cases, both current and emerging. This will require major enhancements of the current 5G capabilities especially in terms of bandwidth, latency, reliability, security, and energy. PREDICT-6G’s mission is therefore set towards the development of an end-to-end 6G (E2E) solution including
    architecture and protocols that can guarantee seamless provisioning of services for vertical use cases requiring extremely tight timing
    and reliability constraints. To succeed, the solution will target determinism network infrastructures at large, including wired and wireless segments and their interconnections. PREDICT-6G will develop a novel Multi-technology Multi-domain Data-Plane (MDP) overhauling
    the reliability and time sensitiveness design features existing in current wired and wireless standards. The ambition is for the MDP design to be inherently deterministic. To achieve this, PREDICT-6G will develop an AI-driven Multi-stakeholder Inter-domain Control-Plane
    (AICP) for the provisioning of deterministic network paths to support time sensitive services as requested by end-customers and with different scaling ambitions, e.g., from the network in a single vehicle to a large, geographically dispersed network. This requires timely
    monitoring and prediction of the behavior of the complete network, including identifying potential sources of quality violations and analyzing various routes of the traffic flows. These capabilities will be delivered through the PREDICT-6G AI-powered Digital Twin (DT) framework, allowing the prediction of the behavior of the end-to-end network infrastructure, and enabling anticipative control and validation of the network provisions to meet the real-world time-sensitive and reliability requirements of the running services.

keywords

  • communication engineering and systems telecommunications