Electronic International Standard Serial Number (EISSN)
1873-1856
abstract
In this article, we relate the spectrum of the discrete magnetic Laplacian (DML) on a finite simple graph with two structural properties of the graph: the existence of a perfect matching and the existence of a Hamiltonian cycle of the underlying graph. In particular, we give a family of spectral obstructions parametrised by the magnetic potential for the graph to be matchable (i.e., having a perfect matching) or for the existence of a Hamiltonian cycle. We base our analysis on a special case of the spectral preorder introduced in [8], and we use the magnetic potential as a spectral control parameter.
Classification
subjects
Mathematics
keywords
discrete magnetic laplacian; hamiltonian graph; matching number; spectral graph theory