Evaluation of optical tracking and augmented reality for needle navigation in sacral nerve stimulation Articles uri icon

publication date

  • September 2022

start page

  • 1

end page

  • 8

volume

  • 221

International Standard Serial Number (ISSN)

  • 0169-2607

Electronic International Standard Serial Number (EISSN)

  • 1872-7565

abstract

  • Background and objective:
    Sacral nerve stimulation (SNS) is a minimally invasive procedure where an electrode lead is implanted through the sacral foramina to stimulate the nerve modulating colonic and urinary functions. One of the most crucial steps in SNS procedures is the placement of the tined lead close to the sacral nerve. However, needle insertion is very challenging for surgeons. Several x-ray projections are required to interpret the needle position correctly. In many cases, multiple punctures are needed, causing an increase in surgical time and patient's discomfort and pain. In this work we propose and evaluate two different navigation systems to guide electrode placement in SNS surgeries designed to reduce surgical time, minimize patient discomfort and improve surgical outcomes.

    Methods:
    We developed, for the first alternative, an open-source navigation software to guide electrode placement by real-time needle tracking with an optical tracking system (OTS). In the second method, we present a smartphone-based AR application that displays virtual guidance elements directly on the affected area, using a 3D printed reference marker placed on the patient. This guidance facilitates needle insertion with a predefined trajectory. Both techniques were evaluated to determine which one obtained better results than the current surgical procedure. To compare the proposals with the clinical method, we developed an x-ray software tool that calculates a digitally reconstructed radiograph, simulating the fluoroscopy acquisitions during the procedure. Twelve physicians (inexperienced and experienced users) performed needle insertions through several specific targets to evaluate the alternative SNS guidance methods on a realistic patient-based phantom.

    Results:
    With each navigation solution, we observed that users took less average time to complete each insertion (36.83 s and 44.43 s for the OTS and AR methods, respectively) and needed fewer average punctures to reach the target (1.23 and 1.96 for the OTS and AR methods respectively) than following the standard clinical method (189.28 s and 3.65 punctures).

    Conclusions:
    To conclude, we have shown two navigation alternatives that could improve surgical outcome by significantly reducing needle insertions, surgical time and patient's pain in SNS procedures. We believe that these solutions are feasible to train surgeons and even replace current SNS clinical procedures.

subjects

  • Aeronautics
  • Biology and Biomedicine
  • Electronics
  • Medicine
  • Naval Engineering

keywords

  • surgical navigation; sacral nerve stimulation; needle guidance; augmented reality; tracking systems