Quantum Kibble-Zurek physics in long-range transverse-field Ising models Articles uri icon

publication date

  • September 2019

start page

  • 032115

issue

  • 3

volume

  • 100

International Standard Serial Number (ISSN)

  • 2469-9926

Electronic International Standard Serial Number (EISSN)

  • 2469-9934

abstract

  • We analyze the quantum phase transitions taking place in a one-dimensional transverse-field Ising model with long-range couplings that decay algebraically with distance. We are interested in the Kibble-Zurek universal scaling laws emerging in nonequilibrium dynamics and in the potential for the unambiguous observation of such behavior in a realistic experimental setup based on trapped ions. To this end, we determine the phase diagram of the model and the critical exponents characterizing its quantum phase transitions by means of density-matrix renormalization group calculations and finite-size scaling theory, which allows us to obtain good estimates for different range of ferromagnetic and antiferromagnetic interactions. Beyond critical equilibrium properties, we tackle a nonequilibrium scenario in which quantum Kibble-Zurek scaling laws may be retrieved. Here, it is found that the predicted nonequilibrium universal behavior, i.e., the scaling laws as a function of the quench rate and critical exponents, can be observed in systems comprising an experimentally feasible number of spins. Finally, a scheme is introduced to simulate the algebraically decaying couplings accurately by means of a digital quantum simulation with trapped ions. Our results suggest that quantum Kibble-Zurek physics can be explored and observed in state-of-the-art experiments with trapped ions realizing long-range Ising models.

keywords

  • long-range interactions; quantum information with trapped ions; quantum phase transitions; quantum simulation