Electronic International Standard Serial Number (EISSN)
1741-4326
abstract
The aim of this study is to analyze the stability of the Alfven eigenmodes (AE) in the Chinese First Quasi-axisymmetric Stellarator (CFQS). The AE stability is calculated using the code FAR3d that solves the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moment for the energetic particles (EP) species including the effect of the helical couplings and acoustic modes. The Landau damping and resonant destabilization effects are added in the model by a given closure relation. The simulation results indicate the destabilization of n = 1 to 4 AEs by EP during the slowing down process, particularly n = 1 and n = 2 toroidal AEs (TAE), n = 3 elliptical AE (EAE) and n = 4 non circular AE (NAE). If the resonance is caused by EPs with an energy above 17 keV (weakly thermalized EP), n = 2 EAEs and n = 3 NAEs are unstable. On the other hand, EPs with an energy below 17 keV (late thermalization stage) lead to the destabilization of n = 3 and n = 4 TAEs. The simulations for an off-axis NBI injection indicate the further destabilization of n = 2 to 4 AEs although the growth rate of the n = 1 AEs slightly decreases, so no clear optimization trend with respect to the NBI deposition region is identified. In addition, n = 2, 4 helical AE (HAE) are unstable above an EP beta threshold. Also, if the thermal beta of the simulation increases (higher thermal plasma density) the AE stability of the plasma improves. The simulations including the effect of the finite Larmor radius and electron-ion Landau damping show the stabilization of the n = 1 to 4 EAE/NAEs as well as a decrease of the growth rate and frequency of the n = 1 to 4 BAE/TAEs.