CCE: An ensemble architecture based on coupled ANN for solving multiclass problems Articles uri icon

publication date

  • June 2020

start page

  • 132

end page

  • 152

volume

  • 58

International Standard Serial Number (ISSN)

  • 1566-2535

Electronic International Standard Serial Number (EISSN)

  • 1872-6305

abstract

  • The resolution of multiclass classification problems has been usually addressed by using a "divide and conquer" strategy that splits the original problem into several binary subproblems. This approach is mandatory when the learning algorithm has been designed to solve binary problems and a multiclass version cannot be devised. Artificial Neural Networks, ANN, are binary learning models whose extension to multiclass problems is rather straightforward by using the standard 1-out-of N codification of the classes. However, the use of a single ANN can be inefficient in terms of accuracy and computational complexity when the data set is large, or the number of classes is high. In this work, we exhaustively describe CCE, a new classifier ensemble based on ANN. Each member of this new ensemble is a couple of multiclass ANN's. Each ANN is trained using different subsets of the dataset ensuring these subsets to be disjoint. This new approach allows to combine the benefits of the divide and conquer methodology, with the use of multiclass ANNs and with the combination of individual classification modules that give a complete answer to the addressed problem. The combination of these elements results in a classifier ensemble in which the diversity of the base classifiers provides high accuracy values. Moreover, the use of couples of ANN proves to be tolerant to labeling noise and computationally efficient. The performance of CCE has been tested on various datasets and the results show the higher performance of this approach with respect to other used classification systems.

keywords

  • artificial neural networks; diversity; ensemble of classifiers; multiclass-classification tasks