Photocatalytic activity of electric-arc furnace flue dusts Articles uri icon

publication date

  • April 2020

start page

  • 1261

end page

  • 1272


  • 2


  • 9


  • Two electric-arc furnace flue dusts, a waste generated during the steel production process, were characterized and their photocatalytic activity was assessed. Chemical composition by X-ray fluorescence (XRF) analysis identified that both dusts were principally formed by iron, zinc and chromium oxides. Structural characterization carried out by X-ray diffraction patterns (XRD), and micro-Raman measurements demonstrated that ZnFe2O4 (zinc ferrite), FeCr2O4 (chromite) and ZnO (zincite) are present in both waste dusts as majority phases. Scanning electron microscopy (SEM) images showed that both dusts are formed by nanoparticles with a globular and octahedral morphology characteristic of the type of flue dusts formation and the obtained phases. Cathodoluminescence (CL) spectra show the characteristics bands of spinel structure (ZnFe2O4) and Fe3+ emission. X-ray photoelectron spectroscopy (XPS) measurements indicate that Fe ions could be present in 2+ and 3+ oxidation state in the spinel structure, while zinc and chromium ions are in 2+ and 3+, respectively. In addition, the photocatalytic experiments demonstrated that the analyzed samples could be useful as photocatalyzed showing a degradation percentage above 75 %.


  • Materials science and engineering


  • eafd; electric steel making waste; photocatalytic activity