Non-linear dynamical analysis of resting tremor for demand-driven deep brain stimulation Articles uri icon

publication date

  • May 2019

start page

  • 1

end page

  • 16

issue

  • 11

volume

  • 19

International Standard Serial Number (ISSN)

  • 1424-3210

Electronic International Standard Serial Number (EISSN)

  • 1424-8220

abstract

  • Parkinson's Disease (PD) is currently the second most common neurodegenerative disease. One of the most characteristic symptoms of PD is resting tremor. Local Field Potentials (LFPs) have been widely studied to investigate deviations from the typical patterns of healthy brain activity. However, the inherent dynamics of the Sub-Thalamic Nucleus (STN) LFPs and their spatiotemporal dynamics have not been well characterized. In this work, we study the non-linear dynamical behaviour of STN-LFPs of Parkinsonian patients using epsilon -recurrence networks. RNs are a non-linear analysis tool that encodes the geometric information of the underlying system, which can be characterised (for example, using graph theoretical measures) to extract information on the geometric properties of the attractor. Results show that the activity of the STN becomes more non-linear during the tremor episodes and that epsilon -recurrence network analysis is a suitable method to distinguish the transitions between movement conditions, anticipating the onset of the tremor, with the potential for application in a demand-driven deep brain stimulation system.

keywords

  • deep brain stimulation (dbs); local field potentials (lfps); nonlinear dynamics; parkinson¿s disease (pd); recurrence networks (rns); support vector machine (svm)