Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries Articles uri icon

publication date

  • October 2019

start page

  • 1

end page

  • 5

issue

  • 226923

volume

  • 437

International Standard Serial Number (ISSN)

  • 0378-7753

Electronic International Standard Serial Number (EISSN)

  • 1873-2755

abstract

  • Lithium-ion batteries, already capable of addressing the requirements of electric vehicles and renewable electricity storage, will be in the focus for the next decade. However, the transition from the small batteries for portable electronic to ultra-high capacity batteries requires safety improvements and cost-cutting efforts. Intensive research has been performed in the last three decades to optimize specific and volumetric capacity of electrodes. Recently the attention is focusing on increasing the electrodes areal capacity to enable the substantial reduction of the current collectors, porous separator, and electrolyte resulting in large gravimetric and volumetric energy density improvements as well as cost savings. Here we propose a lithium-ion battery based on thick, additive-free ceramic negative and positive electrodes, i.e. LTO (Li4Ti5O12) and LFP (LiFePO4), obtained by a solvent-free technology called powder extrusion moulding. Against all odds, the LTO/LFP cell based on these thick ceramic electrodes (areal capacity of 13.3 inA h cm(-2)) achieved the very high energy of about 23.9 mW h cm(-2). Such an excellent performance, achieved simulating a typical day-night charge/discharge cycle, opens the way for the deployment of low cost, effective household (and small industry) energy storage in combination with photovoltaic energy harvesting.

subjects

  • Chemistry
  • Electronics
  • Industrial Engineering
  • Physics

keywords

  • lithium-ion batteries; additive-free electrodes; thick electrodes; high volumetric energy density; powder extrusion mouldi