Electronic International Standard Serial Number (EISSN)
1471-1257
abstract
Hydrogenated amorphous silicon (a-Si:H) solar cells have some performance limitations related to the mobility and lifetime of their carriers. For this reason, it is interesting to explore thin-film solutions, achieving a tradeoff between photons optical absorption and the electrical path of the carriers to get the optimum thickness. In this work, we propose the insertion of a metasurface based on a cross-patterned ITO contact film, where the crosses are filled with nanospheres. We numerically demonstrate that this configuration improves the photogenerated current up to a 40% by means of the resonant effects produced by the metasurface, being independent on the impinging light polarization. Light handling mechanisms guide light into the active and auxiliary layers, increasing the effective absorption and mitigating the Staebler-Wronski effect. The selection of optimum materials and parameters results in nanospheres of ZnO with a 220 nm radius.
Classification
subjects
Electronics
Physics
keywords
hydrogenated solar cell; nanostructure; metasurface; absorption enhancement; short-circuit current