On the Feasibility of 5G Slice Resource Allocation With Spectral Efficiency: A Probabilistic Characterization Articles uri icon

publication date

  • October 2019

start page

  • 151948

end page

  • 151961

volume

  • 7

Electronic International Standard Serial Number (EISSN)

  • 2169-3536

abstract

  • An important concern that 5G networks face is supporting a wide range of services and use cases with heterogeneous requirements. Radio access network (RAN) slices, understood as isolated virtual networks that share a common infrastructure, are a possible answer to this very demanding scenario and enable virtual operators to provide differentiated services over independent logical entities. This article addresses the feasibility of forming 5G slices, answering the question of whether the available capacity (resources) is sufficient to satisfy slice requirements. As spectral efficiency is one of the key metrics in 5G networks, we introduce the minislot-based slicing allocation (MISA) model, a novel 5G slice resource allocation approach that combines the utilization of both complete slots (or physical resource blocks) and mini-slots with the adequate physical layer design and service requirement constraints. We advocate for a probabilistic characterization that allows to estimate feasibility and characterize the behavior of the constraints, while an exhaustive search is very computationally demanding and the methods to check feasibility provide no information on the constraints. In such a characterization, the concept of phase transition allows for the identification of a clear frontier between the feasible and infeasible regions. Our method relies on an adaptation of the Wang-Landau algorithm to determine the existence of, at least, one solution to the problem. The conducted simulations show a significant improvement in spectral efficiency and feasibility of the MISA approach compared to the slot-based formulation, the identification of the phase transition, and valuable results to characterize the satisfiability of the constraints.

keywords

  • 5g slice; resource allocation; feasibility; phase transition; wang-landau algorithm