Novel colloidal approach for the microstructural improvement in Ti(C,N)/FeNi cermets Articles uri icon

publication date

  • November 2017

start page

  • 327

end page

  • 338

volume

  • 724

International Standard Serial Number (ISSN)

  • 0925-8388

Electronic International Standard Serial Number (EISSN)

  • 1873-4669

abstract

  • In this work, the combination of colloidal and powder metallurgy techniques was proposed as an alternative route to produce Ti(C,N)-based cermets with a 15-20 vol% of Fe/Ni alloy (85/15 wt%) as metal matrix. The novelty of this processing route is based in the mixture of fine powders (1;-3 µm) in suspension which promotes the uniformity of the phase distribution and consequently its reactivity, leading to 99.9% dense cermets with 1300 Vickers Hardness (HV30). The preparation of colloidal and chemically stable slurries of non-oxide and metal powders in aqueous media is a key step of the process. Highly concentrated aqueous slurries of Ti(C,N), Fe, Ni and C powders were prepared and mixed. Then bulk pieces were shaped by Slip casting (SC), Slip Casting + Cold Isostatic Pressing (SC-CIP) and Spray-Dry + Uniaxial Pressing of the obtained spherical granules (SDP). The composite formulation and the thermal treatment were optimized to prevent Ni sublimation during sintering as well as to improve liquid phase sintering in terms of wetting and reactivity among well packed particles. The effective dispersion of the slurry and the synergistic effect of combined techniques yielded the preparation of reliable materials by the SDP process with 15 wt% of FeNi with the addition of 0.5 wt% of C. The optimization of the composite formulation and the processing parameters improves both density and hardness of a finer microstructure of the composite after a short sintering treatment (120 min) at 1450 °C in vacuum.

subjects

  • Materials science and engineering

keywords

  • colloidal processing; powder metallurgical processing; ti(c,n)-based cermets; fe/ni; hardness