Electronic International Standard Serial Number (EISSN)
1873-703X
abstract
Resource on Demand in 802.11 Wireless LANs is receiving an increasing attention, with its feasibility already proved in practice and some initial analytical models available. However, while these models have assumed that access points (APs) start up in zero time, experimentation has showed that this is hardly the case. In this work, we provide a new model to account for this time in the simple case, of a WLAN formed by two APs where the second AP is switched on/off dynamically to adapt to the traffic load and reduce the overall power consumption, and show that it significantly alters the results when compared to the zero start-up time case, both qualitatively and quantitatively. Our findings show that having a non-zero start up time modifies significantly the trade-offs between power consumption and performance that appears on Resource on Demand solutions. Finally, we propose an algorithm to optimize the energy consumption of the network while guaranteeing a given performance bound.
Classification
subjects
Telecommunications
keywords
wlan; 802.11; resource on demand; energy consumption; infrastructure on demand; energy; networks