On the Waterfall Performance of Finite-Length SC-LDPC Codes Constructed From Protographs Articles
Overview
published in
publication date
- February 2016
start page
- 345
end page
- 361
issue
- 2
volume
- 34
Digital Object Identifier (DOI)
International Standard Serial Number (ISSN)
- 0733-8716
Electronic International Standard Serial Number (EISSN)
- 1558-0008
abstract
- An analysis of spatially coupled low-density parity-check (SC-LDPC) codes constructed from protographs is proposed. Given the protograph used to generate the SC-LDPC code ensemble, a set of scaling parameters to characterize the average finite-length performance in the waterfall region is computed. The error performance of structured SC-LDPC code ensembles is shown to follow a scaling law similar to that of unstructured randomly constructed SC-LDPC codes. Under a finite-length perspective, some of the most relevant SC-LDPC protograph structures proposed to date are compared. The analysis reveals significant differences in their finite-length scaling behavior, which is corroborated by simulation. Spatially coupled repeat-accumulate codes present excellent finite-length performance, as they outperform in the waterfall region SC-LDPC codes of the same rate and better asymptotic thresholds.
Classification
keywords
- low-density parity-check (ldpc) codes; spatially coupled ldpc codes constructed from protographs; iterative decoding; finite-length analysis; capacity-achieving codes; spatially-coupled ldpc; parity-check codes; convolutional-codes; threshold saturation; correcting codes; minimum distance; ensembles; capacity; graphs; block