Dynamics of thin fluid films controlled by thermal fluctuations Articles uri icon

publication date

  • March 2015

start page

  • 379

end page

  • 387

issue

  • 2

volume

  • 224

international standard serial number (ISSN)

  • 1951-6355

electronic international standard serial number (EISSN)

  • 1951-6401

abstract

  • We consider the influence of thermal fluctuations on the dynamics of thin fluid films in two regimes. Working within the stochastic lubrication approximation, we generalize the results on (stochastic) similarity solutions [B. Davidovitch, et al., Phys. Rev. Lett. 95, 244505 (2005)] that focused on surface tension dominated regime, to gravity-driven relaxation. In particular, we verify numerically the validity of the results in gravity-dominated regime, and find that fluctuations enhance spreading, as in surface tension dominated regime, even in the presence of a faster deterministic relaxation. Considering further the novel case of fluid droplet spreading driven by surface tension and van der Waals forces, our simulations show that the presence of noise affects the value of droplet contact angle.