Solar flux distribution on central receivers: A projection method from analytic function Articles uri icon

publication date

  • February 2015

start page

  • 576

end page

  • 587

volume

  • 74

international standard serial number (ISSN)

  • 0960-1481

electronic international standard serial number (EISSN)

  • 1879-0682

abstract

  • This paper presents a methodology to project the flux distribution from the image plane into the panels of any central receiver in Solar Power Tower plants. Since analytic functions derived from the convolution approach are conveniently defined on the image plane, its oblique projection solves the distorted spot found in actual receivers. Because of its accuracy describing the flux distribution due to rectangular focusing heliostats, we make use of the analytic function on the image plane by Collado et al. (1986). Based on the projection method, we have developed a computer code successfully confronted against PSA measurements and SolTrace software, either for flat plate or multi-panel cylindrical receivers. The validated model overcomes the computation time limitation associated to Monte Carlo technique, with a similar accuracy and even higher level of resolution. For each heliostat in a field, the spillage is computed besides the rest of optical losses; parallel projection is used for shading and blocking. The resulting optical performance tool generates the flux map caused by a whole field of heliostats. A multi-aiming strategy is investigated on the basis of the radius of the reflected beams, estimated from error cone angles. (C) 2014 Elsevier Ltd. All rights reserved.

keywords

  • density; design; heliostat; plant