Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer Articles uri icon

publication date

  • January 2014

issue

  • 1

volume

  • 89

international standard serial number (ISSN)

  • 1539-3755

electronic international standard serial number (EISSN)

  • 1550-2376

abstract

  • We consider the Kardar-Parisi-Zhang equation for a circular interface in two dimensions, unconstrained by the standard small-slope and no-overhang approximations. Numerical simulations using an adaptive scheme allow us to elucidate the complete time evolution as a crossover between a short-time regime with the interface fluctuations of a self-avoiding ring or two-dimensional vesicle, and a long-time regime governed by the Tracy-Widom distribution expected for this geometry. For small-noise amplitudes, scaling behavior is only of the latter type. Large noise is also seen to renormalize the bare physical parameters of the ring, akin to analogous parameter renormalization for equilibrium three-dimensional membranes. Our results bear particular importance on the relation between relevant universality classes of scale-invariant systems in two dimensions.

keywords