Electronic International Standard Serial Number (EISSN)
1873-782X
abstract
The interactions that students have with each other, with the instructors, and with educational resources are valuable indicators of the effectiveness of a learning experience. The increasing use of information and communication technology allows these interactions to be recorded so that analytic or mining techniques are used to gain a deeper understanding of the learning process and propose improvements. But with the increasing variety of tools being used, monitoring student progress is becoming a challenge. The paper answers two questions. The first one is how feasible is to monitor the learning activities occurring in a student personal workspace. The second is how to use the recorded data for the prediction of student achievement in a course. To address these research questions, the paper presents the use of virtual appliances, a fully functional computer simulated over a regular one and configured with all the required tools needed in a learning experience. Students carry out activities in this environment in which a monitoring scheme has been previously configured. A case study is presented in which a comprehensive set of observations were collected. The data is shown to have significant correlation with student academic achievement thus validating the approach to be used as a prediction mechanism. Finally a prediction model is presented based on those observations with the highest correlation.
Classification
subjects
Telecommunications
keywords
educational data mining; learning analytics; virtual appliances; educational systems; predictive systems