Ontology-based context representation and reasoning for object tracking and scene interpretation in video Articles uri icon

publication date

  • junio 2011

start page

  • 7494

end page

  • 7510

issue

  • 6

volume

  • 38

international standard serial number (ISSN)

  • 0957-4174

electronic international standard serial number (EISSN)

  • 1873-6793

abstract

  • Computer vision research has been traditionally focused on the development of quantitative techniques to calculate the properties and relations of the entities appearing in a video sequence. Most object tracking methods are based on statistical methods, which often result inadequate to process complex scenarios. Recently, new techniques based on the exploitation of contextual information have been proposed to overcome the problems that these classical approaches do not solve. The present paper is a contribution in this direction: we propose a Computer Vision framework aimed at the construction of a symbolic model of the scene by integrating tracking data and contextual information. The scene model, represented with formal ontologies, supports the execution of reasoning procedures in order to: (i) obtain a high-level interpretation of the scenario; (ii) provide feedback to the low-level tracking procedure to improve its accuracy and performance. The paper describes the layered architecture of the framework and the structure of the knowledge model, which have been designed in compliance with the JDL model for Information Fusion. We also explain how deductive and abductive reasoning is performed within the model to accomplish scene interpretation and tracking improvement. To show the advantages of our approach, we develop an example of the use of the framework in a video-surveillance application.

keywords

  • object tracking; information fusion; context aware systems; ontologies; rules