We present a novel fluorescent tomography algorithm to estimate the spatial distribution of fluorophores and the fluorescence lifetimes from surface time resolved measurements. The algorithm is a hybridization of the level set technique for recovering the distributions of distinct fluorescent markers with a gradient method for estimating their lifetimes. This imaging method offers several advantages compared to more traditional pixel-based techniques as, for example, well defined boundaries and a better resolution of the images. The numerical experiments show that our imaging method gives rise to accurate reconstructions in the presence of data noise and fluorescence background even for complicated fluorophore distributions in several-centimiter-thick biological tissue.