Electronic International Standard Serial Number (EISSN)
1424-8220
abstract
Accurate and robust positioning has become increasingly essential for emerging applications and services. While GPS (global positioning system) is widely used for outdoor environments, indoor positioning remains a challenging task. This paper presents a novel architecture for indoor positioning, leveraging machine learning techniques and a divide-and-conquer strategy to achieve low error estimates. The proposed method achieves an MAE (mean absolute error) of approximately 1 m for latitude and longitude. Our approach provides a precise and practical solution for indoor positioning. Additionally, some insights on the best machine learning techniques for these tasks are also envisaged.