THz biosensorics is a strongly growing field of research, as many biomolecules and biomolecular complexes exhibit application-relevant intramolecular and intermolecular resonances in this frequency range, with great potential for a wide range of biomedical and diagnostic applications. The TeralBs project aims to develop a radically new technology based on THz radiation for biomedical detection and diagnosis, based on a team of Doctoral Candidates (DCs) with the necessary in-depth background in devices and systems, spectroscopic techniques and biomedical measurement knowledge using THz radiation. To this end, all DCs projects are built around three major technological challenges of THz technology for biomedical applications: the development of cost-effective, sensitive, integrated THz technologies; the exploitation of the high specificity multi-analyte capabilities of THz; and the development of flexible and reliable THz analytical instrumentation and robust information extraction. The DCs projects configure a research programme structured in three research lines, which guide all technological developments in the project: RL1 on biomolecules, RL2 on vesicles and viruses, and RL3 on organ-on-chip sensing. At the end of the project, all the technological developments will be brought together in three demonstrators: a modular all-electronic system for the read-out of metamaterial-based THz biosensors, a fully integrated photonic THz sensor for biomedical applications, and an organ-on-chip model that will be used to validate the different THz sensors and technologies developed in the project in a biomedical-relevant scenario. The multidisciplinary knowledge gained by the DCs will enable them to explore new concepts in the broad field of future biomedical applications, equipped with an attractive set of transferable skills relevant to innovation, long-term employability, and leadership in the field of biomedical applications and THz technologies.