Electronic International Standard Serial Number (EISSN)
2052-5206
abstract
A polycrystalline sample LuCrO3 has been characterized by neutron powder diffraction (NPD) and magnetization measurements. Its crystal structure has been Rietveld refined from NPD data in space group Pnma; this perovskite contains strongly tilted CrO6 octahedra with extremely bent Cr—O—Cr superexchange angles of ∼142°. The NPD data show that below Néel temperature (TN ≃ 131 K), the magnetic structure can be defined as an A-type antiferromagnetic arrangement of Cr3+ magnetic moments, aligned along the b axis, with a canting along the c axis. A noticeable magnetostrictive effect is observed in the unit-cell parameters and volume upon cooling down across TN. The AC magnetic susceptibility indicates the onset of magnetic ordering below 112.6 K; the magnetization isotherms below TN show a nonlinear behaviour that is associated with the described canting of the Cr3+ magnetic moments. From the Curie–Weiss law, the effective moment of the Cr3+ sublattice is found to be μeff = 3.55 μB (calculated 3.7 μB) while the ΘCW parameter yields a value of −155 K, indicating antiferromagnetic interactions. There is a conspicuous increase of TN upon the application of external pressure, which must be due to shortening of the Cr—O bond length under compression that increases the orbital overlap integral.
Classification
subjects
Materials science and engineering
Physics
keywords
lutetium chromite; moment canting; g-type magnetic structure; pressure-dependent magnetization; pressure increment of néel temperature.