Mesenchymal Stem Cells Sense the Toughness of Nanomaterials and Interfaces Articles uri icon

publication date

  • May 2023

start page

  • 1

end page

  • 11

issue

  • 13

volume

  • 12

International Standard Serial Number (ISSN)

  • 2192-2640

Electronic International Standard Serial Number (EISSN)

  • 2192-2659

abstract

  • Stem cells are known to sense and respond to the mechanical properties of biomaterials. In turn, cells exert forces on their environment that can lead to striking changes in shape, size and contraction of associated tissues, and may result in mechanical disruption and functional failure. However, no study has so far correlated stem cell phenotype and biomaterials toughness. Indeed, disentangling toughness-mediated cell response from other mechanosensing processes has remained elusive as it is particularly challenging to uncouple Youngs' or shear moduli from toughness, within a range relevant to cell-generated forces. In this report, it is shown how the design of the macromolecular architecture of polymer nanosheets regulates interfacial toughness, independently of interfacial shear storage modulus, and how this controls the expansion of mesenchymal stem cells at liquid interfaces. The viscoelasticity and toughness of poly(l-lysine) nanosheets assembled at liquid-liquid interfaces is characterised via interfacial shear rheology. The local (microscale) mechanics of nanosheets are characterised via magnetic tweezer-assisted interfacial microrheology and the thickness of these assemblies is determined from in situ ellipsometry. Finally, the response of mesenchymal stem cells to adhesion and culture at corresponding interfaces is investigated via immunostaining and confocal microscopy.

subjects

  • Biology and Biomedicine
  • Materials science and engineering

keywords

  • 2d nanomaterials; liquid-liquid interface; protein nanosheet; self-assembly; stem cells; toughness