Electronic International Standard Serial Number (EISSN)
1520-5029
abstract
Air and air-steam gasification of poultry litter was experimentally studied in a laboratory scale bubbling fluidized bed gasifier at atmospheric pressure using silica sand as the bed material. The effects of equivalence ratio (ER), gasifier temperature, steam to biomass ratio (SBR), and addition of limestone blended with the poultry litter, on product gas species yields and process efficiency, are discussed. The optimum conditions (maximum carbon conversion, gas yield, heating value, and cold gas efficiency) were achieved at an ER 0.25 and 800 °C, using air (SBR = 0) and poultry litter blended with 8% w/w limestone, yielding a product gas with a lower heating value (LHV) of 4.52 MJ/Nm3 and an average product gas composition (dry basis) of H2: 10.78%, CO: 9.38%, CH4: 2.61, and CO2: 13.13. Under these optimum processing conditions, the cold gas efficiency, carbon conversion efficiency, and hydrogen conversion efficiency were 89, 73, and 43% respectively. The reported NH3 measurement at an ER of 0.28 and 750 °C is 2.7% (equivalent to 19,300 mg/Nm3) with 14.7 mg/Nm3 of HCl observed as the dry product gas. High temperature and steam injection favor production of CO and H2, while their effect on CH4 was almost negligible. It is demonstrated that poultry litter can be gasified by blending with limestone, making it possible to overcome the fluidization problems caused by the mineral composition of poultry litter ash (high K and P content), yielding a gas with a similar heating value compared to gasifying without limestone addition, but with a significantly lower tar content.
Classification
subjects
Chemistry
Industrial Engineering
keywords
animal derived food; atmospheric chemistry; gasification reaction products; water