Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system Articles uri icon

publication date

  • October 2018

start page

  • 1

end page

  • 11

volume

  • 150

International Standard Serial Number (ISSN)

  • 1359-8368

Electronic International Standard Serial Number (EISSN)

  • 1879-1069

abstract

  • In the present paper, advanced numerical methodologies have been adopted to investigate the structural behaviour of a composite subcomponent for aerospace applications subjected to quasi-static compression and dynamic loads. The analysed structural component, made of laminated carbon fibres reinforced polymers, is part of the floor support system in the cargo area of a commercial aircraft. The inter-laminar and intra-laminar damage onset and propagation has been preliminary monitored under a quasi-static compressive displacement application. Then, the effects on the structural integrity of two impact energy levels have been analysed: 42 J energy has been applied to study the dynamic behaviour in an elastic linear rate while 585 J energy has been considered to assess the crashworthiness behaviour. The adopted numerical model has been validated by comparisons between the numerical results and analytical mass-spring model results and experimental data in terms of stiffness, strain, and ultimate load. The simultaneous assessment of numerical results and experimental data has allowed to provide a comprehensive insight on the damage onset and propagation leading to the structural collapse of the investigated sub-floor support system.

subjects

  • Aeronautics
  • Materials science and engineering

keywords

  • crashworthiness; finite element analysis (fea); composites; progressive failure analysis (pfa)