Moving towards a sustainable society implies constant improvement in the way energy is supplied and consumed, with wider implementation of solar and wind energy facilities in stand-alone or hybrid configurations. The goal of this work is to evaluate the lifecycle performance (construction and operation-related impact) of large-scale solar and wind energy systems and to compare it with conventional coal and natural gas fossil fuel plants under similar conditions. Environmental analyses of energy conversion systems today usually neglect the construction-related environmental impact of fossil fuel plants, because it is significantly smaller than the impact related to the operation of the plant. However, the construction of large-scale renewable plants implies the use of rare materials, transport-related emissions, and other environmentally impactful activities. The plants evaluated here are configured and compared for similar emissions and similar power output. It is found that the life-cycle environmental impact of the renewable plants could, in some specific cases, exceed that of the fossil fuel plants. Understanding the reasons behind this and the possible limitations of the different technologies can help plan for sustainable energy systems in the future. Finally, solutions to minimize the impact of renewable energy are proposed for more environmentally friendly implementation and future research.
Classification
subjects
Chemistry
Civil and Construction Engineering
Environment
Mechanical Engineering
Natural Resources
Renewable Energies
keywords
environmental impact; fossil fuels; life cycle assessment; solar energy; wind energy