Advanced debonding detection technique for aerospace composite structures Articles uri icon

authors

  • Sorrentino, Assunta
  • ROMANO, FULVIO
  • FENZA, ANGELO DE

publication date

  • August 2021

start page

  • 1011

end page

  • 1017

issue

  • 6

volume

  • 93

International Standard Serial Number (ISSN)

  • 1748-8842

Electronic International Standard Serial Number (EISSN)

  • 1758-4213

abstract

  • Purpose: The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on high frequency sensors/actuators system simulation and the application of elliptical triangulation (ET) and probability ellipse (PE) methods as damage detector. Numerical and experimental results on small-scale stiffened panels made of carbon fiber-reinforced plastic material are discussed. Design/methodology/approach: The damage detection methodology is based on high frequency sensors/actuators piezoceramics system enabling the ET and the PE methods. The approach is based on ultrasonic guided waves propagation measurement and simulation within the structure and perturbations induced by debonding or impact damage that affect the signal characteristics. Findings: The work is focused on debonding detection via test and simulations and calculation of damage indexes (DIs). The ET and PE methodologies have demonstrated the link between the DIs and debonding enabling the identification of position and growth of the damage. Originality/value: The debonding between two structural elements caused in manufacturing or in-service is very difficult to detect, especially when the components are in low accessibility areas. This criticality, together with the uncertainty of long-term adhesive performance and the inability to continuously assess the debonding condition, induces the aircrafts' manufacturers to pursuit ultraconservative design approach, with in turn an increment in final weight of these parts. The aim of this research's activity is to demonstrate the effectiveness of the proposed methodology and the robustness of the structural health monitoring system to detect debonding in a typical aeronautical structural joint.

subjects

  • Aeronautics

keywords

  • structural health monitoring; composite materials; debonding detection; elliptical triangulation methods; guided waves propagation; probability ellipse methods