Production and characterization of bio-oil from fluidized bed pyrolysis of olive stones, pinewood, and torrefied feedstock Articles uri icon

authors

  • TRUBETSKAYA, ANNA
  • VON BERG, LUKAS
  • JOHNSON, ROBERT
  • MOORE, SEAN
  • LEAHY, JJ
  • HAN, YINGLEI
  • LANGE, HEIKO
  • ANCA COUCE, ANDRES

publication date

  • January 2023

start page

  • 1

end page

  • 14

issue

  • 105841

volume

  • 169

International Standard Serial Number (ISSN)

  • 0165-2370

Electronic International Standard Serial Number (EISSN)

  • 1873-250X

abstract

  • Advancements in fluidized bed pyrolysis mechanisms and analytical methodologies are critical for progress in the biorefinery sector in general and the aviation fuel sector in particular. The statistical modelling of pyrolysis product yields and composition allowed us to observe advantages of operating temperature and feedstock selections over the torrefaction process and catalyst addition in a fluidized bed reactor. Results suggest that the chemical composition and physical properties of bio-oil from pyrolysis of olive stones at 600 degrees C and pinewood pellets at 500 degrees C are the most suitable for use as fuels. This work suggests that only combined use of selected gas chromatography mass spectroscopy, UV fluorescence, nuclear magnetic resonance spectroscopy, and rheology can provide comprehensive information on pyrolysis bio-oil composition. Importantly from a technological point of view, bio-oil was characterized i) by a viscosity similar to that of fossil-based oil; ii) by a low oxygen and water content; and iii) by a balanced composition of aliphatic and aromatic species. These factors indicate that bio-oil from fluidized bed pyrolysis of biomasses is a promising material for use in the aviation industry and energy production.

subjects

  • Chemistry
  • Industrial Engineering
  • Materials science and engineering
  • Mechanical Engineering
  • Physics
  • Renewable Energies

keywords

  • bio-oil; catalyst; fuel feeding; olive stones; torrefaction