This article presents a fully 3D-printed dielectric planar lens operating in the entire Ka-band manufactured using additive manufacturing and a relatively low-cost 3D-printer. The lens consists of ten concentric rings implemented using low-loss ABS filaments with high permittivity values. By varying the infill percentages of them the required refractive indexes of each section are achieved. An additional 3D-printed matching layer, using the same manufacturing and design method was included in the lens, to reduce reflections. Simulation and measurement results show a very good agreement, which confirms the possibility of manufacturing a cost-effective broadband and planar lens solution operating in millimeter wave bands, where Low Earth Orbit Satellites (LEO) networks, future mobile communication systems (5G, 6G) and radar systems operate.