A solar-driven 5th generation district heating and cooling network with ground-source heat pumps: a thermo-economic analysis Articles uri icon

authors

  • Calise, Francesco
  • Liberato Cappiello, Francesco
  • DENTICE D'ACCADIA, MASSIMO
  • PETRAKOPOULOU, FOTEINI KONSTANTINA
  • Vicidomini, Maria

publication date

  • January 2022

start page

  • 1

end page

  • 20

volume

  • 76

International Standard Serial Number (ISSN)

  • 2210-6707

Electronic International Standard Serial Number (EISSN)

  • 2210-6715

abstract

  • District Heating and Cooling is considered an efficient solution to address the thermal energy demand of the building sector and reduce its environmental impact. In this paper, a 5th generation bidirectional heating/cooling network is designed and modelled. The network is coupled with water-to-water heat pumps, ground heat pumps and a photovoltaic field and is designed to meet the energy requirements of a 50-building district in the city of Leganés (Madrid). All components are modelled in TRNSYS 18. The studied network achieves a primary energy saving index of 64% and reduces the CO2 emissions by 76% relative to the current situation. The economic analysis of the system results in the relatively long payback period of 33 years, mainly due to the high costs of excavation and the installation of the heat pumps and pipes. With the current design, the photovoltaic field meets only 30% of the electricity demand of the district. However, additional energy storage could help align the power production with the actual power demand better and avoid grid balancing issues. The inclusion of other types of thermal energy consumers would also enhance the performance of the network by increasing the simultaneity between cooling and heating demands.

subjects

  • Renewable Energies

keywords

  • 5th generation district heat and cool network; bidirectional low temperature network; ground heat pumps; photovoltaic; renewable energy district; ods; sostenibilidad