Note on the generalized conformable derivative Articles uri icon

publication date

  • December 2021

start page

  • 443

end page

  • 457


  • 2


  • 62

International Standard Serial Number (ISSN)

  • 0041-6932

Electronic International Standard Serial Number (EISSN)

  • 1669-9637


  • We introduce a definition of a generalized conformable derivative
    of order α > 0 (where this parameter does not need to be integer), with
    which we overcome some deficiencies of known local derivatives, conformable
    or not. This definition allows us to compute fractional derivatives of functions
    defined on any open set on the real line (and not just on the positive half-
    line). Moreover, we extend some classical results to the context of fractional
    derivatives. Also, we obtain results for the case α > 1


  • fractional derivatives; fractional calculus; applications