Hybrid plasma simulations of a magnetically shielded Hall thruste Articles uri icon

publication date

  • March 2022

start page

  • 103302

issue

  • 10

volume

  • 131

International Standard Serial Number (ISSN)

  • 0021-8979

Electronic International Standard Serial Number (EISSN)

  • 1089-7550

abstract

  • Numerical simulations of a magnetically shielded Hall effect thruster with a centrally mounted cathode are performed with an axisymmetric hybrid particle-in-cell/fluid code and are partially validated with experimental data. A full description of the plasma discharge inside the thruster chamber and in the near plume is presented and discussed, with the aim of highlighting those features most dependent on the magnetic configuration and the central cathode. Compared to traditional magnetic configurations, the acceleration region is mainly outside the
    thruster, whereas high plasma densities and low temperatures are found inside the thruster. Thus, magnetic shielding does not decrease
    plasma currents to the walls, but reduces significantly the energy fluxes, yielding low heat loads and practically no wall erosion. The injection
    of neutrals at the central cathode generates a secondary plasma plume that merges with the main one and facilitates much the drift of elec-
    trons toward the chamber. Once inside, the magnetic topology is efficient in channeling electron current away from lateral walls. Current
    and power balances are analyzed to assess performances in detail.