Some relations between the Riemann zeta function and the generalized Bernoulli polynomials of level m Articles uri icon

publication date

  • December 2019

start page

  • 188

end page

  • 201

issue

  • 4

volume

  • 2

International Standard Serial Number (ISSN)

  • 2619-9653

abstract

  • The main purpose of this paper is to show some relations between the Riemann zeta function and the generalized Bernoulli polynomials of level m. Our approach is based on the use of Fourier expansions for the periodic generalized Bernoulli functions of level m, as well as quadrature formulae of Euler-Maclaurin type. Some illustrative examples involving such relations are also given.

subjects

  • Mathematics

keywords

  • bernoulli polynomials; euler-maclaurin quadrature formulae; generalized bernoulli polynomials of level m; quadrature formula; riemann zeta function