Power impact of loop buffer schemes for biomedical wireless sensor nodes Articles uri icon

publication date

  • November 2012

start page

  • 15088

end page

  • 15118

issue

  • 11

volume

  • 12

International Standard Serial Number (ISSN)

  • 1424-3210

Electronic International Standard Serial Number (EISSN)

  • 1424-8220

abstract

  • Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instructionmemory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.

keywords

  • power impact; loop buffer; instruction memory organisation; biomedical; wireless sensor node