Electronic International Standard Serial Number (EISSN)
1573-0484
abstract
Many current system-on-chip (SoC) devices are composed of low-power multicore processors combined with a small graphics accelerator (or GPU) offering a trade-off between computational capacity and low-power consumption. In this context, spatial audio methods such as wave field synthesis (WFS) can benefit from a distributed system composed of several SoCs that collaborate to tackle the high computational cost of rendering virtual sound sources. This paper aims at evaluating important aspects dealing with a distributed WFS implementation that runs over a network of Jetson Nano boards composed of embedded GPU-based SoCs: computational performance, energy efficiency, and synchronization issues. Our results show that the maximum efficiency is obtained when the WFS system operates the GPU frequency at 691.2 MHz, achieving 11 sources-per-Watt. Synchronization experiments using the NTP protocol show that the maximum initial delay of 10 ms between nodes does not prevent us from achieving high spatial sound quality.
Classification
subjects
Mechanical Engineering
keywords
embedded systems; gpu; jetson nano; real time; spatial audio; system-on-chip (soc); wave field synthesis