Electronic International Standard Serial Number (EISSN)
1751-8121
abstract
We prove that, under some natural conditions, Hamiltonian systems on a contact manifold C can be split into a Reeb dynamics on an open subset of C and a Liouville dynamics on a submanifold of C of codimension 1. For the Reeb dynamics we find an invariant measure. Moreover, we show that, under certain completeness conditions, the existence of an invariant measure for the Liouville dynamics can be characterized using the notion of a symplectic sandwich with contact bread.