Regularized bagged canonical component analysis for multiclass learning in brain imaging Articles uri icon

publication date

  • October 2020

start page

  • 641

end page

  • 659


  • 4


  • 18

International Standard Serial Number (ISSN)

  • 1539-2791

Electronic International Standard Serial Number (EISSN)

  • 1559-0089


  • A fundamental problem of supervised learning algorithms for brain imaging applications is that the number of features far exceeds the number of subjects. In this paper, we propose a combined feature selection and extraction approach for multiclass problems. This method starts with a bagging procedure which calculates the sign consistency of the multivariate analysis (MVA) projection matrix feature-wise to determine the relevance of each feature. This relevance measure provides a parsimonious matrix, which is combined with a hypothesis test to automatically determine the number of selected features. Then, a novel MVA regularized with the sign and magnitude consistency of the features is used to generate a reduced set of summary components providing a compact data description. We evaluated the proposed method with two multiclass brain imaging problems: 1) the classification of the elderly subjects in four classes (cognitively normal, stable mild cognitive impairment (MCI), MCI converting to AD in 3 years, and Alzheimer"s disease) based on structural brain imaging data from the ADNI cohort; 2) the classification of children in 3 classes (typically developing, and 2 types of Attention Deficit/Hyperactivity Disorder (ADHD)) based on functional connectivity. Experimental results confirmed that each brain image (defined by 29.852 features in the ADNI database and 61.425 in the ADHD) could be represented with only 30 − 45% of the original features. Furthermore, this information could be redefined into two or three summary components, providing not only a gain of interpretability but also classification rate improvements when compared to state-of-art reference methods.


  • Telecommunications


  • brain imaging; canonical correlation analysis; feature selection; multiclass classification