Electronic International Standard Serial Number (EISSN)
1660-5454
abstract
We provide necessary and sufficient conditions for the matrix equation X⊤AX=B to be consistent when B is a symmetric matrix, for all matrices A with a few exceptions. The matrices A, B, and X (unknown) are matrices with complex entries. We first see that we can restrict ourselves to the case where A and B are given in canonical form for congruence and, then, we address the equation with A and B in such form. The characterization strongly depends on the canonical form for congruence of A. The problem we solve is equivalent to: given a complex bilinear form (represented by A) find the maximum dimension of a subspace such that the restriction of the bilinear form to this subspace is a symmetric non-degenerate bilinear form.
Classification
subjects
Mathematics
keywords
matrix equation; transpose; congruence; t-riccati equation; canonical form for congruence; symmetric matrix; bilinear form