Deep physiological model for blood glucose prediction in T1DM patients Articles uri icon

publication date

  • July 2020

start page

  • 1

end page

  • 17


  • 14, 3896


  • 20

International Standard Serial Number (ISSN)

  • 1424-3210

Electronic International Standard Serial Number (EISSN)

  • 1424-8220


  • Accurate estimations for the near future levels of blood glucose are crucial for Type 1 Diabetes Mellitus (T1DM) patients in order to be able to react on time and avoid hypo and hyper-glycemic episodes. Accurate predictions for blood glucose are the base for control algorithms in glucose regulating systems such as the artificial pancreas. Numerous research studies have already been conducted in order to provide predictions for blood glucose levels with particularities in the input signals and underlying models used. These models can be categorized into two major families: those based on tuning glucose physiological-metabolic models and those based on learning glucose evolution patterns based on machine learning techniques. This paper reviews the state of the art in blood glucose predictions for T1DM patients and proposes, implements, validates and compares a new hybrid model that decomposes a deep machine learning model in order to mimic the metabolic behavior of physiological blood glucose methods. The differential equations for carbohydrate and insulin absorption in physiological models are modeled using a Recurrent Neural Network (RNN) implemented using Long Short-Term Memory (LSTM) cells. The results show Root Mean Square Error (RMSE) values under 5 mg/dL for simulated patients and under 10 mg/dL for real patients.


  • Biology and Biomedicine
  • Computer Science


  • blood glucose prediction; type 1 diabetes mellitus; deep machine learning; physiological models